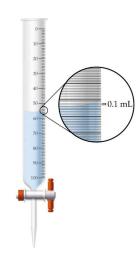
§ 7 (suite) Titrages acide-base

Titrage acidométrique


Les *titrages (ou dosage) acide-base* sont une des techniques les plus utilisées de la chimie analytique. La méthode consiste à déterminer la quantité d'acide dans une solution en y ajoutant une quantité équivalente d'une base, ou vice-versa.

A un volume V_0 connu d'une solution d'acide de concentration inconnue c_a on ajoute progressivement une solution de base de concentration connue c_{titr} . Le titrage sera terminé lorsqu'un volume V_{titr} de base aura neutralisé complètement la solution à analyser. Au **point d'équivalence**, le nombre de moles de OH^- ajouté sous la forme du réactif de titrage n_{titr} est égal au nombre de moles de H_3O^+ initialement présents dans la solution à titrer n_a :

$$n_{titr} = c_{titr} \cdot V_{titr} = c_{\alpha} \cdot V_0 = n_{\alpha}$$

A l'inverse, le titrage d'une solution de base de concentration inconnue se fera par ajout progressif d'une solution d'acide de concentration connue.

Dans le cas d'un polyacide ou d'une base polyprotique, le titrage compte plusieurs points d'équivalence. Le pH à chacun de ces points est généralement différent de 7.

Indicateurs acide-base colorés

Lors d'un titrage acide-base, on détecte le point d'équivalence (fin de la réaction de neutralisation) en <u>mesurant le</u> <u>pH</u> à l'aide d'un <u>pH-mètre</u> ou en employant un **indicateur coloré** qui change de couleur dans une zone de <u>pH</u> donnée.

Un indicateur est un acide faible dont la forme acide HIn est caractérisé par une couleur différente de celle de sa base conjuguée In⁻.

$$HIn + H_2O \rightleftharpoons In^- + H_3O^+$$
 $K_a = [In^-] \cdot [H_3O^+] / ([HIn] \cdot c^0)$

Le **point de virage** de l'indicateur est le pH auquel les concentrations des deux formes HIn et In- sont égales :

 $[HIn] = [In^-] \Rightarrow K_a = [H_3O^+] / c^0 \Rightarrow pH = pKa.$

Exemple: Bleu de bromothymol, $pK_a = 6.8$

Choix d'un indicateur

Un indicateur acide-base doit être choisi de sorte que son point de virage soit proche du *pH* du point d'équivalence du titrage.

	Zone de virage	Couleur acide	Couleur basique
Bleu de thymol	1.2 – 2.8	rouge	jaune
Hélianthine	2.1 – 4.4	orange	jaune
Rouge de méthyl	4.2 – 6.3	rouge	jaune
Bleu de bromothymol	6.0 – 7.6	jaune	bleu
Rouge de crésol	7.2 – 8.8	jaune	rouge
Phénolphtaléine	8.3 – 10.0	incolore	rouge
Jaune d'alizarine	10.1 – 12.0	jaune	rouge

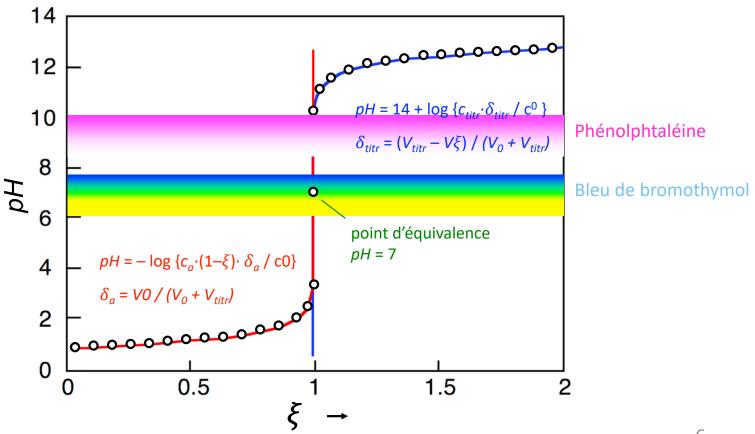
Il existe aussi un grand nombre d'indicateurs acide-base naturels. Ces composés sont souvent des molécules de la classe des <u>anthocyanes</u> et sont responsables de la couleur rouge ou bleue de certains végétaux (hortensia, coquelicot, chou rouge, bleuet, ...).

Titrage d'un acide fort

Une estimation très précise du point d'équivalence peut être obtenue par la mesure du pH pendant le titrage. Si n_a est le nombre d'équivalents d'acide ou de base à titrer et n_{titr} le nombre d'équivalents de base ou d'acide ajoutés, la neutralisation complète de la solution sera obtenue pour $\xi = n_{titr} / n_a = 1$, où ξ représente le degré d'avancement du titrage. Le graphe de $pH = f(n_{titr})$ ou encore $pH = f(\xi)$, est appelé **courbe de titrage** (ou courbe de neutralisation).

Lors du titrage d'un volume V_0 d'un monoacide de concentration analytique c_a par une solution titrante de concentration c_{titr} , la concentration d'acide c restante lorsqu'on aura ajouté un volume V_{titr} de base sera :

$$c = c_a \cdot (1 - \xi) \cdot V_0 / (V_0 + V_{titr}) = c_a \cdot (1 - \xi) \cdot \delta_a \quad \text{avec } \delta_a = V_0 / (V_0 + V_{titr})$$


Dans le cas particulier du titrage d'une <u>acide fort</u> par une <u>base forte</u> (NaOH par exemple), la réaction de neutralisation $A^- + H^+ + OH^- \rightarrow A^- + H_2O$ est complète.

- pour 0 < ξ < 1 , il y a un excès d'acide et le *pH* est donné par *pH* ≈ − log (c / c⁰), ⇒ pH = − log { c_a ·(1− ξ)· V_o / [c⁰· (V_o + V_{titr})] } = − log { c_a ·(1− ξ)· δ_a / c⁰ }
- pour ξ = 1, on a ajouté autant d'ions OH[−] qu'il y avait d'ions H⁺ : [OH[−]] = [H⁺] ⇒ pH = 7.
- pour ξ > 1, il y a un excès de base forte ajoutée ⇒ pH = 14 + log (c_b/c^0) , où c_b est la concentration de la base en excès: $c_b = c_{titr}$ · δ_{titr} , avec le facteur de dilution : $\delta_{titr} = (V_{titr} V_{\xi}) / (V_0 + V_{titr})$.

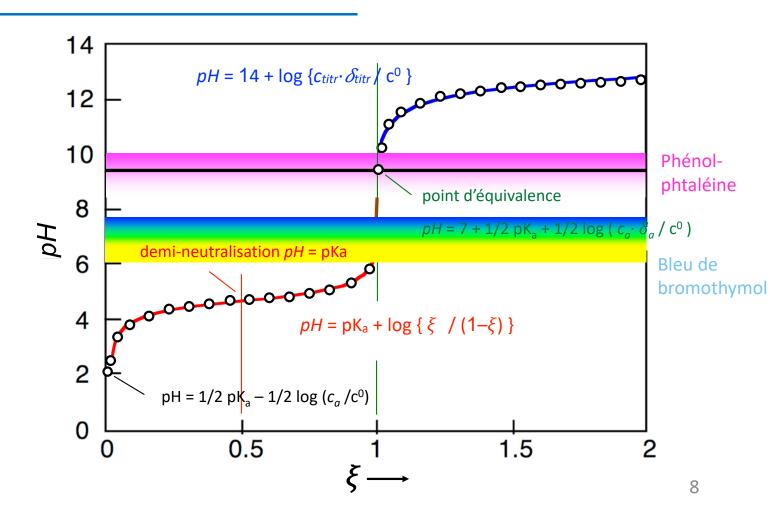
Courbe de titrage d'un acide fort

<u>Titrage d'un acide fort par</u> <u>une base forte:</u>

p.ex HCl + NaOH

Titrage d'un acide faible

Considérons le titrage d'une solution d'un acide faible, tel que l'acide acétique par exemple, par une base forte, comme NaOH : $AH + OH^- \rightarrow A^- + H_2O$.


La fonction $pH = f(\xi)$ dans ce cas est du 3e degré. Les approximations présentées jusqu'ici s'appliquent toutefois aux différents domaines de la courbe :

- Pour $\xi = 0$, l'acide faible est pur. Si celui-ci n'est que faiblement dissocié, l'approximation vue précédemment s'applique et pH = 1/2 pK_a -1/2 log (c_a/c^0) .
- pour $0.25 < \xi < 0.75$, le *pH* est donné par l'équation de Henderson-Hasselbalch $pH = pK_a log \{ [AH] / [A^-] \} = pK_a log \{ (1-\xi) / \xi \}$. \$
- Remarquons que pour $\xi = 0.5$, on a $(1-\xi)/\xi = 1$ et $pH = pK_a$.
- pour $\xi = 1$, la neutralisation est terminée. On a une solution contenant $c_a \cdot \delta_a$ du sel de la base conjuguée de notre acide faible (de l'acétate de sodium dans notre exemple). Nous avons donc une solution d'une base faible et le *pH* peut être estimé à partir de l'équation approchée : $pH = 7 + \frac{1}{2} pK_a + \frac{1}{2} log (c_a \cdot \delta_a / c^0)$.
- pour $\xi > 1$, on a un excès de base ajoutée. Si l'on admet que les ions OH⁻ provenant de la dissociation de la base conjuguée de notre acide faible sont en quantité négligeable par rapport à ceux provenant de la solution titrante de base forte, on a simplement : $pH = 14 + \log \{ c_{titr} \cdot \delta_{titr} / c^0 \}$.

Courbe de titrage d'un acide faible

<u>Titrage d'un acide faible</u> <u>par une base forte:</u>

p.ex CH₃COOH + NaOH

Titrage d'une base par un acide fort

Ce cas est symétrique au cas du titrage d'un acide par une base forte. La différence réside évidemment dans le fait qu'ici le *pH* diminue au cours du titrage au lieu d'augmenter.

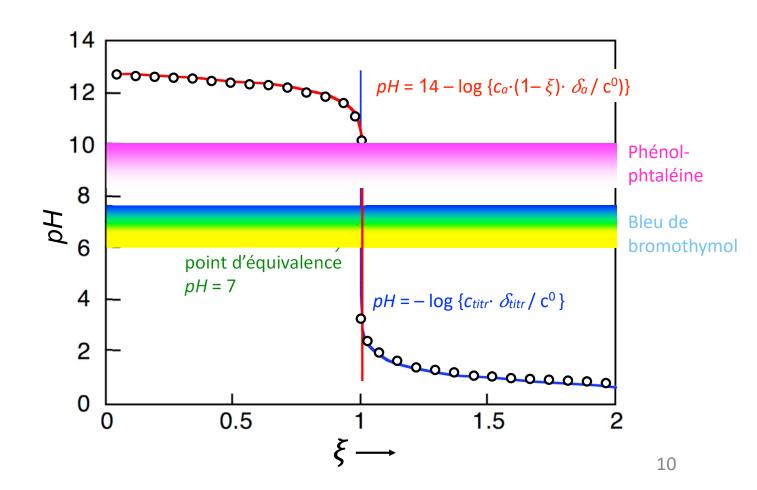
Dans le cas du titrage d'une base forte par un acide fort, la courbe de neutralisation varie lentement pendant l'addition de l'acide, puis présente une partie quasi-verticale pendant laquelle le *pH* change brusquement de plusieurs unités. Le *pH* du point d'équivalence est encore égal à 7.

Le titrage d'une base faible par un acide fort est également le symétrique du cas du titrage d'un acide faible par une base forte:

La solution initiale est constitué d'une base faible. Si celle-ci n'est que faiblement protonée, on aura:

$$pH \approx 7 + \frac{1}{2} \{ pK_a + log (c_a/c^0) \}$$
, avec $pK_a = pK_e - pK_b$.

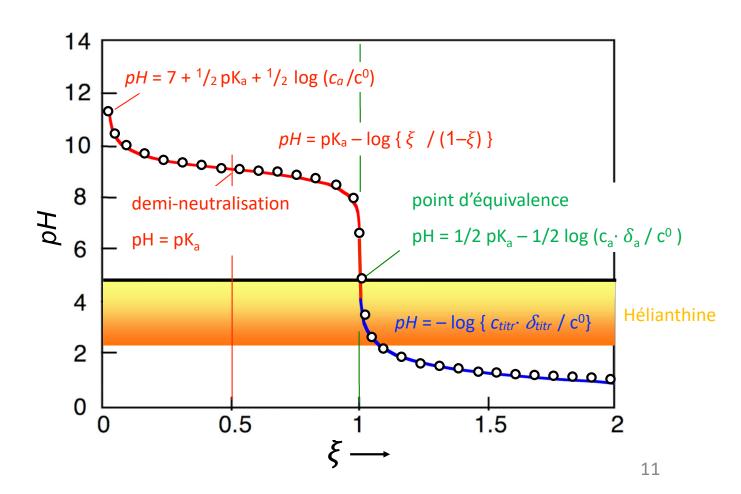
Après une diminution initiale rapide du pH, la courbe de neutralisation présente un palier presque horizontal (effet tampon). Le pH est donné encore une fois dans cette zone par l'équation de Henderson-Hasselbalch: $pH = pK_a - \log \{ \xi / (1-\xi) \}$. A la demi-neutralisation ($\xi = 0.5$), apparaît un point d'inflexion et $pH = pK_a = pK_b$.


Le *pH* varie ensuite brusquement aux environs du point d'équivalence. A ce point, on a une solution de l'acide conjugué BH⁺ de la base B et le pH est donc acide avec:

$$pH = \frac{1}{2} pK_a - \frac{1}{2} \log (c_a \cdot \delta_a / c^0).$$

Courbe de titrage d'une base forte

<u>Titrage d'une base forte</u> <u>par un acide fort:</u>


p.ex NaOH + HCl

Courbe de titrage d'une base faible

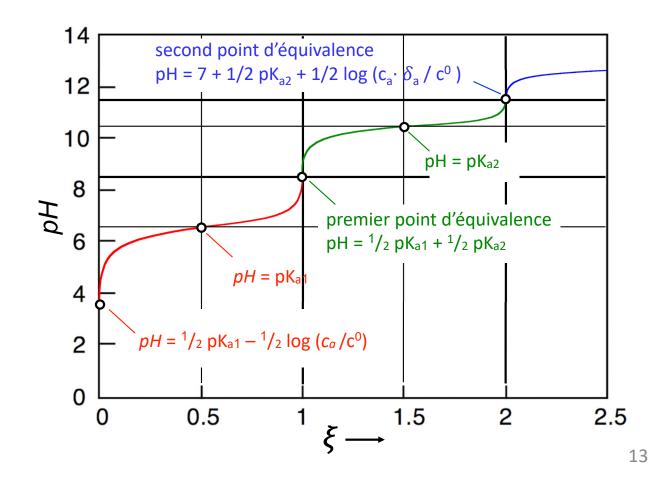
<u>Titrage d'une base faible</u> <u>par un acide fort:</u>

 $p.ex NH_3 + HCI$

Titrage d'un acide polyprotique

A titre d'exemple, considérons le titrage d'une solution d'acide carbonique H_2CO_3 de concentration c_a = 0.1 M par une base forte, telle que NaOH. Les pK_a de l'acide carbonique sont pK_{a1} = 6.38 et pK_{a2} = 10.32.

$$H_2CO_3 \rightleftharpoons HCO_3^- + H^+ \qquad HCO_3^- \rightleftarrows CO_3^{2-} + H^+$$


- Pour $\xi = 0$, l'acide est pur. L'écart suffisant entre les deux pK_a permet d'utiliser l'approximation d'un mono-acide faible : $pH = \frac{1}{2}$ pK_{a1} $-\frac{1}{2}$ log $(c_a/c^0) = 3.69$.
- Pour ξ = 0.5, la première acidité est à moitié neutralisée et on a un mélange équimolaire de H₂CO₃ et HCO₃⁻. Henderson donne donc: pH = pK_{a1} = 6.38
- Pour $\xi = 1$, la première acidité est totalement neutralisée. On a alors une solution de concentration c_a · δ_a de HCO_3^- , un ampholyte, dont le pH est donné par la relation : $pH = \frac{1}{2}$ ($pK_{a1} + pK_{a2}$) = 8.35.
- Pour $\xi = 1.5$, la deuxième acidité est à moitié neutralisée. On a un mélange équimolaire de HCO_3^- et CO_3^{2-} dont le $pH = pK_{a2} = 10.32$.
- Pour $\xi = 2$, la deuxième acidité est à son tour totalement neutralisée. On a une de concentration c_a · δ_a de CO_3^{2-} , une base, dont le pH est donné par : $pH = 7 + \frac{1}{2} pK_{a2} + \frac{1}{2} log (c_a$ · δ_a / c^0) Pour $\delta_a \approx 1$ $pH \approx 11.7$
- Pour $\xi > 2$, on a un excès de base forte ajoutée et le *pH* tend vers *pH* \approx 13.

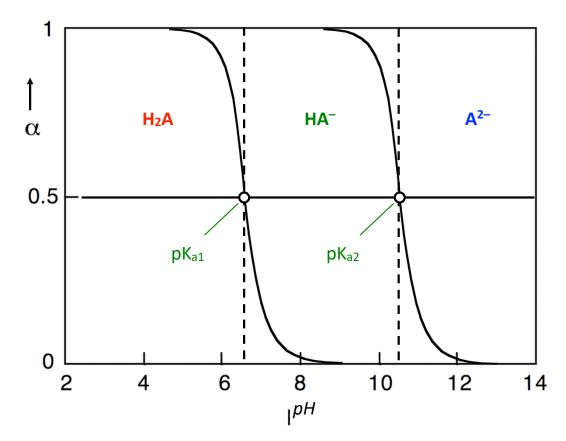
Courbe de titrage d'un acide polyprotique

<u>Titrage d'un acide polyprotique</u> <u>faible par une base forte:</u>

 $p.ex H_2CO3 + HCI$

 $pK_{a1} = 6.38 \text{ et } pK_{a2} = 10.32$

Diagramme de distribution d'un acide polyprotique


Les concentrations en différentes espèces peuvent être rapportées à la concentration analytique de l'acide polyprotique c_a . Pour les espèces d'un acide diprotique H_2A , on aura ainsi:

$$\alpha(H_2A) = [H_2A] / c_a$$
, $\alpha(HA^-)$

$$= [HA^-] / c_a \text{ et } \alpha(A^{2-})$$

$$= [A^{2-}] / c_a$$
, avec $\sum_i \alpha_i = 1$.

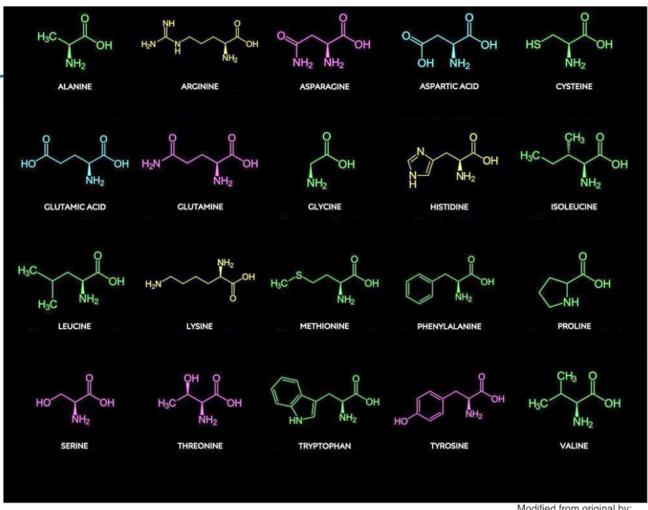
Dans le cas de l'exemple de l'acide carbonique, l'évaluation des fractions ai permet de tracer un nouveau diagramme de distribution des espèces.

Acides aminés

Un *acide aminé* est une molécule organique possédant un squelette carboné et deux groupes fonctionnels: un *acide carboxylique* (–COOH) et une *amine* (–NH₂). Les acides aminés sont les unités structurales de base des *protéines*.

Les acides aminés <u>naturels</u> sont pour la majorités des molécules dont la structure générale est donnée ici à droite (*acides* a-*aminés*). R représente une chaîne latérale spécifique à chaque acide aminé.

R ▼ C C C C C C C

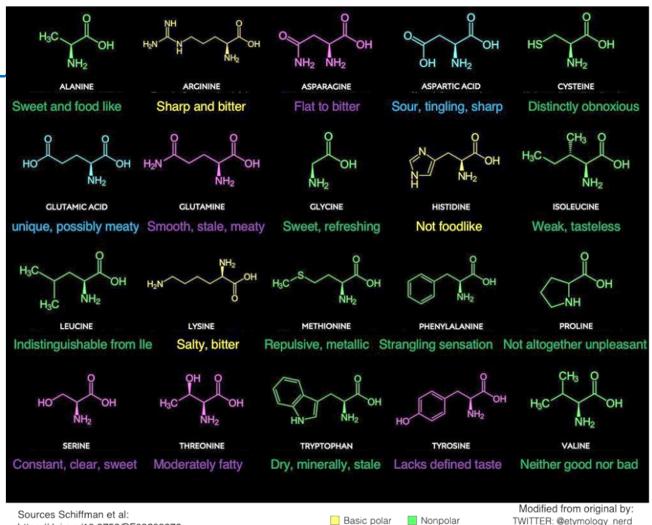

En solution, l'ionisation des acides aminés dépend du pH. Trois formes sont possibles:

- <u>en milieu acide</u>: les deux groupes fonctionnels sont protonés et l'acide aminé se trouve sous forme de cation: $-NH_2 + H^+ \rightleftharpoons -NH_3^+$ (pK_a ≈ 10)
- <u>en milieu basique</u> : seule la fonction carboxylique s'ionise. L'acide aminé est sous forme d'<u>anion</u> : $-COOH \rightleftharpoons -COO^- + H^+ (pK_a' = 2-5)$.
- Pour une valeur particulière du pH, appelée **point isoélectrique**, telle que $pH = {}^{1}/_{2}$ ($pK_{a} + pK_{a}'$) , les deux fonctions sont ionisées à un degré équivalent. L'acide aminé se trouve alors dans une forme di-ionique (*zwitterion*), globalement neutre du point de vue électrostatique.

Dans un champ électrique à une valeur de *pH* donnée, les acides aminés auront une mobilité différente, dépendant du pK_a de leurs groupes fonctionnels. La technique analytique d'*électrophorèse* permet ainsi de les séparer et de les identifier.

Acides aminés

$$\begin{array}{c|c}
R \\
\downarrow \\
C \\
C \\
H \\
O
\end{array}$$

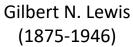

Sources Schiffman et al: https://doi.org/10.3758/BF03203878 https://doi.org/10.1016/0031-9384(81)90298-5

Basic polar Nonpolar Acidic polar Polar

Modified from original by: TWITTER: @etymology_nerd INSTAGRAM: @etymologynerd

Acides aminés goût

$$\begin{array}{c|c}
R \\
\downarrow \\
C \\
H \\
0
\end{array}$$


https://doi.org/10.3758/BF03203878 https://doi.org/10.1016/0031-9384(81)90298-5

Nonpolar Acidic polar Polar

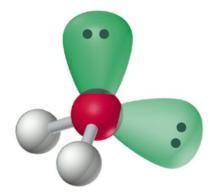
TWITTER: @etymology_nerd INSTAGRAM: @etymologynerd

§ 7 (suite) Acides et bases de Lewis

Acides et bases de Lewis

Le modèle de Brønsted-Lowry n'est pas adapté aux réactions acide-base en phase gazeuse ou dans un solvant inerte. Dans ces milieux, le proton H⁺ peut en effet être absent de la réaction.

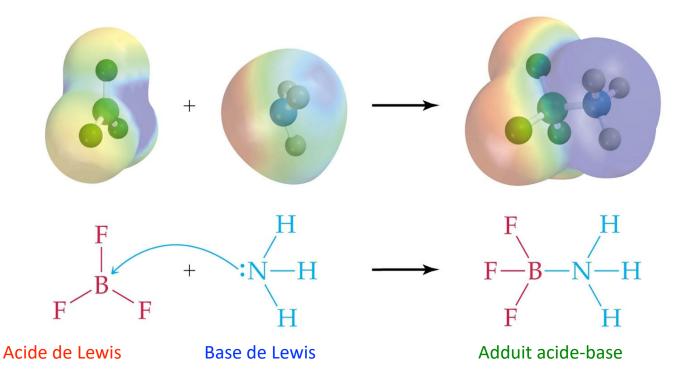
Le modèle de Lewis fournit de nouvelles définitions des acides et des bases:


On appelle ainsi *acide de Lewis* une espèce chimique dont l'un des atomes, déficient en électrons, est capable de se lier à un autre composé porteur d'une paire d'électrons non partagée. On dit qu'un acide de Lewis est un <u>accepteur de paire d'électrons</u>. Il peut être moléculaire (comme BF₃) ou un cation (H⁺, Li⁺, Al³⁺, Ti⁴⁺).

A l'inverse, une **base de Lewis** est une espèce dont l'un des atomes est porteur d'une paire d'électrons non partagée et qui peut servir à se lier avec un acide de Lewis. On dit qu'une base de Lewis est un <u>donneur de paire d'électrons</u>. Elle peut être un composé moléculaire (H₂O, NH₃) ou un anion (F⁻, Cl⁻).

L'ammoniac gazeux ou liquide est un exemple de base de Lewis, car il est constitué de molécules possédant une paire (un doublet) d'électrons non partagés sur l'atome d'azote. De même, l'eau possède deux paires d'électrons non partagés sur l'atome d'oxygène. H₂O est une base de Lewis.

Gilbert N. Lewis (1875-1946)



Adduit acide-base de Lewis

Le produit de la réaction entre un acide de Lewis et une base de Lewis est appelé un *adduit* ou un *complexe acide-base* de Lewis:

Exemples:

BF₃ (g) + NH₃ (g)
$$\rightleftharpoons$$
 F₃BNH₃ (g)
SO₃ (g) + H₂O (I) \rightleftharpoons H₂SO₄ (I)
Ni (s) + 4 CO (g) \rightleftharpoons Ni(CO)₄ (g)
Ti⁴⁺ + 4 Cl⁻ \rightleftharpoons TiCl₄

